An Adaptive Financial Trading System Using Deep Reinforcement Learning With Candlestick Decomposing Features
نویسندگان
چکیده
منابع مشابه
An automated FX trading system using adaptive reinforcement learning
This paper introduces adaptive reinforcement learning (ARL) as the basis for a fully automated trading system application. The system is designed to trade FX markets and relies on a layered structure consisting of a machine learning algorithm, a risk management overlay and a dynamic utility optimization layer. An existing machine-learning method called recurrent reinforcement learning (RRL) was...
متن کاملAdaptive stock trading with dynamic asset allocation using reinforcement learning
Stock trading is an important decision-making problem that involves both stock selection and asset management. Though many promising results have been reported for predicting prices, selecting stocks, and managing assets using machine-learning techniques, considering all of them is challenging because of their complexity. In this paper, we present a new stock trading method that incorporates dy...
متن کاملMaking Financial Trading by Recurrent Reinforcement Learning
In this paper we propose a financial trading system whose strategy is developed by means of an artificial neural network approach based on a recurrent reinforcement learning algorithm. In general terms, this kind of approach consists in specifying a trading policy based on some predetermined investor’s measure of profitability, and in setting the financial trading system while using it. In part...
متن کاملAn Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...
متن کاملDeep Reinforcement Learning for Pairs Trading
Reinforcement learning (RL) [1] differs from traditional supervised machine learning in the sense that it not only considers short-term consequences of actions/decisions, but also long-term outcomes. Because of recent advances in deep learning, model-free deep reinforcement learning (DRL) has proven successful in various applications, as with the success of a deep Q-network (DQN) in the Atari g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2982662